Search results

1 – 1 of 1
Article
Publication date: 7 April 2015

Ashraf Elazouni, Anas Alghazi and Shokri Z. Selim

The purpose of this paper is to compare the performance of the genetic algorithm (GA), simulate annealing (SA) and shuffled frog-leaping algorithm (SFLA) in solving discrete…

Abstract

Purpose

The purpose of this paper is to compare the performance of the genetic algorithm (GA), simulate annealing (SA) and shuffled frog-leaping algorithm (SFLA) in solving discrete versus continuous-variable optimization problems of the finance-based scheduling. This involves the minimization of the project duration and consequently the time-related cost components of construction contractors including overheads, finance costs and delay penalties.

Design/methodology/approach

The meta-heuristics of the GA, SA and SFLA have been implemented to solve non-deterministic polynomial-time hard (NP-hard) finance-based scheduling problem employing the objective of minimizing the project duration. The traditional problem of generating unfeasible solutions in scheduling problems is adequately tackled in the implementations of the meta-heuristics in this paper.

Findings

The obtained results indicated that the SA outperformed the SFLA and GA in terms of the quality of solutions as well as the computational cost based on the small-size networks of 30 activities, whereas it exhibited the least total duration based on the large-size networks of 120 and 210 activities after prolonged processing time.

Research limitations/implications

From researchers’ perspective, finance-based scheduling is one of the few domain problems which can be formulated as discrete and continuous-variable optimization problems and, thus, can be used by researchers as a test bed to give more insight into the performance of new developments of meta-heuristics in solving discrete and continuous-variable optimization problems.

Practical implications

Finance-based scheduling discrete-variable optimization problem is of high relevance to the practitioners, as it allows schedulers to devise finance-feasible schedules of minimum duration. The minimization of project duration is focal for the minimization of time-related cost components of construction contractors including overheads, finance costs and delay penalties. Moreover, planning for the expedient project completion is a major time-management aspect of construction contractors towards the achievement of the objective of client satisfaction through the expedient delivery of the completed project for clients to start reaping the anticipated benefits.

Social implications

Planning for the expedient project completion is a major time-management aspect of construction contractors towards the achievement of the objective of client satisfaction.

Originality/value

SFLA represents a relatively recent meta-heuristic that proved to be promising, based on its limited number of applications in the literature. This paper is to implement SFLA to solve the discrete-variable optimization problem of the finance-based scheduling and assess its performance by comparing its results against those of the GA and SA.

Details

Journal of Financial Management of Property and Construction, vol. 20 no. 1
Type: Research Article
ISSN: 1366-4387

Keywords

1 – 1 of 1